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We address the phenomenon of drag reduction by a dilute polymeric additive to turbulent flows, using direct
numerical simulation$DNS) of the FENE-P model of viscoelastic flows. It had been amply demonstrated that
these model equations reproduce the phenomenon, but the results of DNS were not analyzed so far with the
goal of interpreting the phenomenon. In order to construct a useful framework for the understanding of drag
reduction we initiate in this paper an investigation of the most important modes that are sustained in the
viscoelastic and Newtonian turbulent flows, respectively. The modes are obtained empirically using the
Karhunen-Loge decomposition, allowing us to compare the most energetic modes in the viscoelastic and
Newtonian flows. The main finding of the present study is thatspatial profile of the most energetic modes
is hardly changed between the two floWghat changes is the energy associated with these modes, and their
relative ordering in the decreasing order from the most energetic to the least. Modes that are highly excited in
one flow can be strongly suppressed in the other, and vice versa. This dramatic energy redistribution is an
important clue to the mechanism of drag reduction as is proposed in this paper. In particular, there is an
enhancement of the energy containing modes in the viscoelastic flow compared to the Newtonian one; drag
reduction is seen in the energy containing modes rather than the dissipative modes, as proposed in some
previous theories.
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[. INTRODUCTION the the existence of viscosityradientspositioned at a stra-
tegic distance from the wall, which is crucial for the exis-
“Drag reduction” refers to the interesting observation thattence of a large effect. It seems desirable to do something
the addition of a few tens of parts per millighy weighy of ~ Similar for the viscoelastic turbulent flows as weh which
long-chain polymers to turbulent fluids can bring about al€ Space dependent effective viscosity arises due to differ-
reduction of the friction drag by up to 80%4]. Obviously, ~cntial stretching of the polymersBut, in distinction from
the phenomenon has far reaching practical implications, b rimary and secondary instabilities, where it is obvious that

ides bei hall i h d | boi ’ “Swhich are the relevant modes, for the turbulent flow, these
sides being challenging from the fundamental point of View.5re not knowra priori. We therefore decided to first initiate

In spite of an intense interest in an extended period of timg systematic study of the empirical modes that are sustained
[2—4], Sreenivasan and Whifé] recently concluded that “it in the turbulent flow, and then to discuss their interaction
is fair to say that the extensive-and continuing-activity hasyith the mean flow and with the polymeric additive, their
not produced a firm grasp of the mechanisms of drag reducstabilization or destabilization when we compare the vis-
tion.” In this paper, we want to advance on the basis of acoelastic to the Newtonian flow, and their energy budget. In
recent direct numerical simulatiofDNS) of model vis- this paper, we present the first results of this study.
coelastic hydrodynamic equatiofs—8]. Such DNS's show It is natural to focus on the 'most energetlc modgs in the
unequivocally that drag reduction is reproduced by modefO respective flows. After all, if we drive a Newtonian and
equations such as the finitely extensible nonlinear elastif corresponding viscoelastic flow with the same work input

- . . er unit time and mass, drag reduction exhibits itself as an
(Pgterlln S verspm (.FENE'.F.) mode_l. Frqm_ the theoretical iFr)1crease in the throughput o? the viscoelastic flow. In other
point of view, this is significant, since it indicates that the words, the kinetic energy is increasing. Since the kinetic en-
phenomenon is included in the solutions of the model equagrgy is dominated by the energy containing modes, we need
tions. Understanding drag reduction then becomes a usug understand how these are affected by the addition of poly-
challenge of theoretical physics. mers to a Newtonian fluid. For channel flows distinction

Our thinking here is motivated in part by a recent analysiswith homogeneous periodic flowsthe energy containing

of the stability of laminar channel flows that are subject tomodes arenot Fourier modes, but rather modes that satisfy
space dependent effective viscodigy10]. It turned out that the boundary conditions. A first step therefore in studying
even the small viscosity gradients can lead to a giant stabdrag reduction in channel flows is the identification of the
lization of the most unstable modes, both for primary andenergy containing modes and the study of their sensitivity to
secondary instabilities. In these cases, one can understand tiiee polymeric additives.

phenomenon completely by examining the energy budget of We will demonstrate that we can determine with reason-
the putative unstable modes and their interaction with theble accuracy at least the first 30 most energetic modes that
mean flow; the most important observation had been that it iare sustained in the turbulent flow, for both the FENE-P and
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the Navier-Stokes equatiorfsun at the same friction Rey-
nolds number, and see below for detpilEhese modes can

be arranged in descending order according to their relative
energy. Unexpectedly, we find that the nature of the most Y z
relevant modes is unchanged in the two cases. On the other 5 — 2H
hand, the energies associated with the modes and their rela- ﬁ U,
tive ordering are changed; some modes that are energetic in
one flow are strongly suppresséhbeir energy decreases by a
factor of 4 in the other flow, and vice versa. Most impor-  FIG. 1. Geometry of the channel flow between two parallel
tantly, the few most energetic modes of the viscoelastic flowlanes separated by-in they direction. The mean velocity(y)
contain a lot more energy than the same number of moss oriented along thex axis (streamwise direction The three-
energetic Newtonian modes. We therefore propose that dratjmensional velocity fluctuations are space homogeneous in the
reduction should be understood by examining the dynamics-z plane, wherez is usually called the spanwise direction. It is
and relative stability of the energy containing modes rathegustomary to use the Fourier decomposition in this plage;
than focusing only on the dissipative end of the spectrum, as (dx.d,) is the corresponding two-dimensional wave vector.
proposed, for example, in Rg#].

\

In Secs. Il A and Il B, we summarize the FENE-P equa- p2—p?
tions and the numerical approach. In Sec. Il C, we present f(r,t)Ez—. (©)
the essential results regarding the observation of drag reduc- Pm—Ry(1,D)

tion. In Sec. Il we review the Karhunen-Loe method for . . .
determining the best empirical modes, and apply it to the The model is closed by the equation of motion for the
problem at hand. In Sec. IV, we discuss the results, demorfonformation tensor which reads

strate the invariance of the modes, and present the relative

ordering. Section V is devoted to the discussion of the find- IRap F(U-V)R, ;=R ,+R au,
ings and of future works. at B g, BT g g
1
Il. EQUATIONS OF MOTION AND DIRECT — —[f(r, )R p5Sapl. (4
NUMERICAL SIMULATIONS i
A. The FENE-P model for dilute polymers The model is derived by assuming that the polymer can be

The addition of a dilute polymer to a Newtonian fluid characterized completely by an end-to-end vector distance.
gives rise to an extra stress tendfir,t), which affects the Nevertheless, the resulting equations could be written on the

Navier-Stokes equations basis of plausible arguments including up to quadratic terms
in gradients and available tensors. For our purposes, the ac-
au ) curacy of the model in reproducing quantitatively all the phe-
2 T V)u==Vp+uVu+v.7, nomena of turbulence in viscoelastic fluids is not an issue of
concern. We are mainly interested in the fact that these equa-
V.u=0. 1) tions were simulated on the computer in a channel geometry

and exhibited the phenomenon of drag reduction as dis-
cussed below. Our aim is to understand drag reduction within

Here, u(r,t) is the solenoidal velocity fieldp(r,t) is the the FENE-P model.

pressure, and is the viscosity of the neat fluid. The addi-
tional stress tensdfl” is not known exactly, and needs to be
modeled. There are a number of competing derivations, see B. Direct numerical simulations
Refs.[11,12. In our work, we adopt the FENE-P model that A simple flow geometry that exhibits the phenomenon of
is derived on the basis of a dumb-bell model for the poly-grag reduction is channel flow between two parallel planes,
mers[11,12 and is known to reproduce the phenomenon ofsenarated by the distancédZin the y direction, see Fig. 1.
drag reducuon__ In this modeis dgtermlned by the “poly-  The computational domain is periodic in the two directions
mer conformation tensorR according to parallel to the wallstreamwisex, spanwisez). The Navier-
Stokes equatioril) is written in terms of the wall-normal

vy | f(r,t) component of velocityu,(r,t) and the vorticity w,(r,t),
T, t)=—" _2R(r't)_1]' 2 Wwherew=Vxu ’ ’
o[ po '
Here, 1 is the unit tensory, is the viscosity parameter, is rra +(u-Vyu,=— W +vsVuy+VgTsy,

the relaxation time for the polymer conformation tensor, and

po is the parameter that in the derivation of the model stands

for the rms extension of the polymers in equilibrium. The J@y 2

function f(r,t) limits the growth of the trace dR to a maxi- g TuV)e,=(e VIUy vV oy €y VpVoToy,
mum valuep,: (5)
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with e,z, the fully antisymmetric Levi-Civitaensor. Given the appropriate inner scale will be denoted by the superscript
uy, and w,, the components of the velocity field in the two +; no special symbol is used to denote normalization by an
directions parallel to the-z plane follow from the continuity —outer scale.
equation and the definition @b, , Finally, there are parameters associated with the polymer.
Foremost is the Deborah number that is defined as the ratio
Ju of the relaxation timer, and a typical time scale of the fluid
=__ = p
Vius—5 Vixusey, ©®  motion, i.e.,

where the subscrifitdenotes projection of vectors on tkez Tp
plane. The system of Eqé5) and (6) is one of the standard De=—. (11
formulations used for the direct numerical simulation of tur- 0

bulent channel flows, since the procedure yields a solenoidal , , .
velocity field to machine accuracy. The parameter ,= v,/vs measures the relative viscosity of

In light of the periodicity in thex-z plane, it is natural to the polymers with respect to the Newtonian solvent, and the

expand the planar components of the velocity field in Fourief’onlinear Zcha;ractenstms of the spring is defined in terms of
modes. For the wall-normal direction, one uses Chebyshe{f® ratiopy/pg. _ _ _ _
polynomials. The time stepping is carried out by a mixed N all our comparisons of Newtonian and viscoelastic
Crank-Nicolson and Runge-Kutta scheme for the viscous analmulfitlons, the friction Reynolds number is kept constant at
the nonlinear terms, respectively. The integration in the nor2 typical value Rg=125. The correspondence between the
mal direction is done by the Chebyshewmethod and a stan- WO flows is obtained by flxmg the computanpnal domain,
dard dealiasing technique is adopted for the nonlinear term&nd choosing for the Newtonian case a viscosity equal to the
The typical simulations have been performed on a computaeverall viscosity qf thg solu_t|on. The parameters chosen for
tional grid of 96x 129x 96 nodes in a domain of dimensions ag thze viscoelastic simulations are B&5, 7,=0.1, and
27H X 2H % 1.27H. Turbulence is maintained by enforcing Pn/Po=1000.
the same constant pressure gradient for the corresponding
Newtonian and viscoelastic simulations. C. Overview of drag reduction

In discussing the simulations, one notes that the channel , i i ) .
half-heightH is only one of the parameters that sets up the In this section, we review briefly the main results of the
external length scale. An additional important control paramPrésent simulations, which demonstrate the phenomenon of

eter is the enforced pressure gradient at the wall, which dedrag reduct.ion. Fora more detailed .descript_ion, see [Bef.
termines the friction. Denoting by pointed brackets an aver- N€ analysis presented in the following sections employs the

age over time the friction parameter is defined as very same DNS. . . .
In comparing the viscoelastic and the Newtonian flows,

_ ap we maintain the friction Reynolds numbes) fixed. We re-
Tw=H (?_x> . (7) iterate that to achieve this we need to choose the viscosity of
the Newtonian flow properly, since the viscoelastic wall

This is the basic control parameter of the flow. By consider-Stress contains a small viscoelastic contribution,
ing also the overall kinematic viscosity=vs+ v, the tra- m

ditional friction Reynolds number is defined as = VSd_er?;X (12)
u.H
Re= vi U= \/T:W ® The component of the extra strefg does not vanish on the

average, contributing in our simulation about 10% of the
whereu, is the friction velocity. As customary in wall tur- total drag.

bulence, one may introduce the inner, or viscous, length The main observations regarding drag reductions are as

scale follows.
(i) For a fixed mean pressure gradient at the wall, the
=2t ) viscoelastic flow exhibits an increased flow rate through the
u,’ channel, see Fig. 2. In this figure, the mean profiles in the

streamwise direction are shown, the other means vanish by
The inner velocity scale, has its counterpart bulk velocity symmetry:

uoz%f dy(uy). (10) Uu(y)=U(y)=(uy(r,n),

Correspondingly, we have the outer and inner time scales Uy(y)=U,y)=0. (13
To=H/Uy and v¢/u?, respectively.

In the sequel, all quantities are made dimensionless unlesghe increase in the throughput entails an increased bulk Rey-
stated otherwise. Those made dimensionless with respect twlds number,
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FIG. 2. Mean velocity profiles for the Newtonian and for the G, 3. Two point spanwise correlation of the streamwise veloc-

viscoelas.tic simulationg with 391.25. .Solid line: Newtonian. ity component, Ky (Yo,Z)/Kx(Y0,0): Viscoelastic flow(dashed
Dashed line: viscoelastic. The straight lines represent the classicf,e) Newtonian flow(solid line). Re=125,y; =7.

log law, Eq.(15).
characteristic frequencies for the viscoelastic model. This
Re — UoH 14 corresponds quite well to the experimental data, for example,
&= ve (14 of Luchik and Tiedermar13], in which a decrease of the

bursting frequency is observed in drag reducing solutions.
(il) Some typical length scales increase in the viscoelastigve do not reproduce these results here.
flow. The data in Fig. 2 can be recast in terms of the log law  (iv) Finally, the root mean square fluctuations change sig-

of the wall, nificantly as a function of. Denoting
U* =1y A, 15 Ualy) = ([T, (1,012, (19

we display in Fig. 4 they dependence of the three compo-
wherek=0.4 is the Von Karman constant. The constAnt nentsa=x,y,z. The streamwise fluctuations are shown to
depends on the thickness of the buffer plus viscous sublayncrease with respect to the corresponding Newtonian flow,
ers, defined as the distance between the wall and the begifhile both the spanwise and the wall-normal fluctuations
ning of the log region. The log law exists equally well for the decrease, in qualitative agreement with available experimen-
viscoelastic as for the Newtonian flow with the sakjédut  ta] results[13].
the numerical value of the constaAtis substantially in- In conclusion, the FENE-P model is shown to exhibit the
creased in the former. This thickening of the buffer layer isphenomenon of drag reduction in close similarity to experi-

directly related to the increased flow rate. The effect of themental observations. In addition, DNS of this model pro-
thickening buffer layer can also be measured by the increase

of the spanwise scale of the streamwise velocity fluctuations. 3.5
Decomposing the velocity field into a mean and a fluctuating

part, 3
U () =U(y)+uy(rt), (16) 2.5
one introduces the correlation tensor g 2
5 _ 5
Kap(r,r)=(Ua(r,tiug(r',1)). (17) 2 15
In Fig. 3, we showK,,(r,r") for r=(x,y,z), r'=(x,y,z 1F

+Z). [Note that by homogeneitl{,,= K,,(y,Z)]. Figure 3
demonstrated the increase in the spanwise correlation length 0.5
of the streamwise velocity fluctuations, which can be defined

as 0

1
Lidy)= Kxx(y,O)f dZKdY,2). (18 FIG. 4. Velocity fluctuations, normalized by friction velocity

for the viscoelastiqdashed ling and the Newtonian flow(solid
(iii) A comparison of the time signals between the vis-line). In both casedJ,, U,, andU, are given by solid, dashed, and
coelastic and the Newtonian cases shows an alteration of thiatted lines, respectively.
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vides complete information about the velocity field and theHere,E(q,p) is the energy associated with the modgp),
covariance tensor fieldR(r,t) as a function of space and ordered in decreasing energy order, with a giwervave
time. Thus, a sufficiently efficient analysis of this model andvector in the wall parallel directions, aqfmimode number in
its turbulent flow pattern should provide a insight into thethey direction, orthogonal to the plane walls. Denoting&y
mechanism of drag reduction. the total energy in the system, we have

U2
I1l. ANALYSIS USING EMPIRICAL MODES 55] dgr?:% E(ap). 23)

In this section, we present the analysis of the difference
between viscoelastic and Newtonian flows in terms of theThe modes labeled byg(p) can be relabeled in order of
empirical modes that are sustained in the turbulent flow. Irdecreasing energy by introducing an indesxn this notation,
choosing a method to extract the modes, we are led by thghe modes whose associated energ§ is- E(q,p) are de-
desire to find the “best” modes, and best in our case willnoted by
mean those that are most energetic. In fluid mechanics the
energy is quadratic in the field, so best is related to closeness W, (n|yY)=V (0, PnlY), (24)
in the L2 norm. As is well known, the standard method to
find the best representation It norms is the Karhunen- where @,,p,) is the label of thenth mode. It is useful to
Loeve method. The aim of the Karhunen lveemethod is to  introduce also a set of fields indexed by
provide a set of modes that optimally decompose the field of
interest, in our case the velocity field averaged over time. O, (n[r)=W ,(nly)exdi(g, r))]. (25
The approach is guaranteed to yield the best set of truncated
modes, meaning that the field cannot be approximated bettdihese functions are orthogonal in the sense
(in L2 norm) by any other set of the same number of modes.
The method had been applied to fluid mechanics in a number i E fl
of contexts, see, for examplgl4-16 for details and rel- 2N 4
evant references. We first adapt the Karhunenveaaethod
to the present context, and then discuss the results of thehe fluctuation velocity field can be now expanded in terms
analysis. of these fields,

The core object for the analysis is the simultaneous cor-
relation function of the velocity fluctuations, which was in-

ldy®a(n|y,fu)‘b2(n' |y,|’H) = 5nn’ : (26)

troduced already in Eq17). Due to stationarity, this object ua(t,r)=; an()®,(nlr). (27)
is time independent, and due to homogeneity inxtadz
direction, we can write The main advantage of the Karhunen-keemethod is that
B , ., 20 any finite truncation of this expansion can be shown to yield
Kap=Kap(X'=x,2"=Z}y,y"). (200 the best approximation for the velocity fieldn the L2

In th lationallV i iant directi d norm). Moreover, due to the symmetry of the correlation
bn the trr]ans ﬁtlolga y |n\éar|ant wggtloniz ong' calnnot O matrix, the modes are orthonormalfter suitable normaliza-
etter than the Fourier decomposition. Accordingly, we CON%ion), and correlation functions in the basis of these modes

sider the partly decomposed objé@(q|y,y’) defined as are diagonal:

~ ’ 1 ’ ’ ’
Q(dly.y =N 2 KaplX' =x,2'=2y.y")
I

(anar ) =Epdnn - (28)

, , Similarly, one can have an optimal representation of the cor-
Xexp{—1[ax(X" =x)+ (2" =2)]}. (2D relation matrix itself as

We denote the discrete two-dimensional wave vector in the

x-z plane as q=(qy.q,)=(q,27/Ay,0,27/A,), where Ka,3=§n: EnW o (n[y)W s(nly")exdigy- (rj—=rf)].

.0 are integersN;=N,N, and the sum is taken over the (29)
discrete set ok-z points withrj=(j,A,/Ny,j,A,/N;) the

X-zZ projection ofr. In analyzing the DNS, the modes are determined by using

The nontrivial empirical modes are obtained from the re-an expansion in terms of Chebyshev polynomigl¢y) in
maining dep,endence ony’, for each given planag. The  they direction. Denotey; as thejth node in the list ofN,
Karhunen-Loge method consists of finding the eigenfunc- Chebyshev nodes,
tions \I’aﬁ(q,p|y), which solve the eigenvalue equation

.7T .
yj=—cogir | i=L... Ny, (30

1 ~
fﬁlQaﬁ(qu,y’)%(q,ply’)dy’=E(q,p)\lfa(q,ply)- y

(22 and express
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! (N) and viscoelasti€¢VE) simulations will be denoted by,

V. (a,ply)= 2 W (a,p[K) Ti(y). (3D andng respectively, dropping the subscript whenefers to
both cases.

Then, Eq.(22) is discretized as
IV. ANALYSIS AND RESULTS

y21 Aa,B q“ k)\ifﬁ q p|k A. The dominant modes are approximately invariant
= The first discovery in the study of the empirical modes
Ny—1 was admittedly unexpected for the present authors, and in
=E(q,p) 2, ‘i'a(qyp|k')Tk/(y1), (32)  hindsight very serendipitous for the discussion of drag reduc-
K'=0 tion. We found thathe dominant modes are approximately
invariant In other words, the same modes that carry a siz-
where able fraction of energy of the viscoelastic flow appear essen-

tially unchanged in the Newtonian flow, having practically
Y the same spatial dependence. We will first demonstrate this
Aqplali.k)= E Qaplaly; Y ) Tulyj)Wjr,  (33) unexpected finding, and later focus on the difference be-
B tween the two flows.
with w; the integration weights. To discuss meaningfully the correspondence between the

For a giveng, Eq. (32) results in a linear algebraic eigen- empiri_cal modes in the' two cases, we seek a cri_terion of
value problem of orderN,xN,), with the pth eigenvector maFchlng the wscqelastlc modes to the_: Cor_respondmg New-
iven by ¥(q,p|k), k=0 N. and the correspondin tonian modes. This can be done easily, since both sets of
gi enva)llueECE q,p) éinc; we héé(jyto solve for everpdiscregte modes form a complete orthonormal basis for solenoidal
9 a.p). = . y fields in the same domain. Each viscoelastic mode can then
wave vectorg, there exist in totaN,N, eigenvalue problems

) . ) xpan in terms of the Newtonian
to be solved in order to determine the full set of e|genfunc-be expanded in terms of the Newtonian set,

tions. From the discrete eigenvectors, the corresponding dis- Ve N
crete modes are constructed according to the discrete analog ¥, (q,pVEIy)=pE A9, pvelpn) P o (a,pnly).  (36)
of Eqg. (25), N

B . The complex amplitudé(a, pyve|pn) is given by the projec-
®o(a.plry)=Ya(aplypexrild -l G4 o0 of the viscoelastic modpye on Newtonian modey,

where Eq.(31) is used to evaluat&V, at the Chebyshev with identical wall-parallel wave vectay

nodes. The discrete modes are normalized according to the 1Ny
discrete version of E¢26), A(d, Pvelpn) = E W oE(a,pyely)) WA (g paly))w

Ny (37)

1
D, Ly ek r,ypw;=1. (35
ZNH 2 rzu (@pl i (@pl Y%, We find that all the most energetic modes of the viscoelas-

tic flow have one amplitude whose magnitude is close to

In practice, we ran DNS with and without polymers for unity. For example, we plot the absolute magnitude
5000 large-eddy turnover timég,, see Sec. Il B, in statisti- |A(q,pye/pn)| as a function opy in Fig. 5 for the first three
cally stationary conditions. The time step used for time admost energetic viscoelastic modes. Each of these modes dis-
vancement, in terms of viscous unitg/u?, Sec. I1B, is  plays an amplitude maximum very close to unity, implying
Dt"=0.05. Since the same pressure gradlent is enforced ithat it matches well a single Newtonian mode. This proce-
the two cases, the friction velocity is identical, while the bulk dure furnishes a correspondence between viscoelastic and
velocity increases by 24% in the viscoelastic simulation.Newtonian modes: a given viscoelastic mode corresponds to
This corresponds to a reduction of the large-eddy turnovethe Newtonian mode for which the amplitut®(q, pve| pn)|
time, To. is maximal. This unambiguously associates a single Newton-

We have collectedNsqqys fields, Nfegs= 100, displaced in  ian mode to each viscoelastic mode. The value of the maxi-
time by 50r,. These fields were used to construct the dis-mal amplitude, hereafter calledatching parametemives a
crete correlation function, E¢17), at the nodes of the com- quantitative estimate of the difference in shape between two
putational grid. Eigenvalues and eigenvectors of its discreteorresponding modes. A matching parameter equal to 1 im-
Fourier transform in the wall parallel directions have thenplies an absolute identity between the two modes in the en-
been evaluated, according to E@2). The modes corre- ergy norm. The correspondence in the spatial structure can
sponding to the computed eigenvectors have been arrangéten be verified by a direct inspection. For instance, match-
in the order of decreasing eigenvalue. From E2p), the  ing modes for the cases discussed in Fig. 5, where the match-
eigenvalues correspond to the average energies in the coimg parameter is well above 0.9, are almost indistinguishable.
sidered modes, so that the chosen arrangement is in fact &hysically, the matching parameter represents the fraction of
ordering in terms of decreasing energy content. Wherthe energy in the viscoelastic mode that is ascribed to the
needed, the index of the energetic ordering of the Newtoniamatching Newtonian mode. Figure 6 shows the matching
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0.6
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0.4
0.2
1 1 .
0 5 . 15
Pn
1
(b)
0.8F
0.6F
[T
0.4F
0.2F
0 . | 1 .
5 . 10 15 FIG. 7. Isosurface of the streamwise component of the first most
N energetic moded,(n=1|r), which is the same for the Newtonian
1 and the viscoelastic flows, i.e., the moge (0,3), p=1. In both
0.8 © cases, Re=125. Note that this mode is a nonpropagating roll
) mode.
0.6
- 04 parameter for the first 30 most energetic viscoelastic modes
) (nVEs 30). All the VE modes, except the 23rd and 29th, have
0.2 a matching parameter above 0.9. We conclude that at least as
0 . . . o far as the most energetic modes are concerned, the spatial
5 . 10 15 structure of the modes is almost not altered by the polymer.
N

Roughly speaking, this can be expressed by saying that the
FIG. 5. Projections of the three most energetic viscoelastignodes are approximately invariant, i.e., fixed in shdpm.

modes on the basis of the Newtonian best modes with the game Practical purposes, the difference between the Newtonian

Re.=125. Panel(a) the most energetic viscoelastic mode and viscoe_lastic empirical modes can be saf_ely disr_egarded

=(0,3), p=1. This mode fits very well the most energetic mode of Next, we discuss what changes from Newtonian to viscoelas-

the Newtonian flow which is the sant@,3,1. Panel(b) the second  tiC turbulence.

most energetic viscoelastic mode= (0,2), p=1. This mode fits

very well the sixth most energetic mode of the Newtonian flow B. The energy and the relative ordering change

(0,2,2. Panel(c) the third most energetic viscoelastic moae

=(0,1), p=1. This mode fits well the fourth most energetic New-

tonian modeg(0,1,1).

In light of the first discovery, the second may be already
anticipated: although the dominant modes hardly change,
their energies and relative energy ordering change very sig-
nificantly. We propose that understanding the change of en-
ergies and relative ordering of the modes will take us a long
way in understanding drag reduction. We begin by compar-
ing the most dominant modes in the two respective flows.
Each empirical mode is identified by three numbers,

(9,.9,), andp, where as explained above corresponds to
the index of the energetic ordering for fixed wave vecjor

06 F 1. The most dominant mode
B gi In Fig. 7, we present pictorially the mod®@,3,2) which is
03k the most energetic for both the Newtonian and viscoelastic
02F simulation. Its amplitude(t),
01F
0 ll() 2IO 3

Tyg

N

j — ~
a(t)y==—— u(ty. ,r®*(n=1ly. ,r)w;,
FIG. 6. Matching parameter of the first 30 most energetic vis- () 2Ny 121 rEH al Yi H) al |yJ ”) '

coelastic modes witleorrespondingNewtonian modes, Re=125. (38
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FIG. 8. Portrait of the most energetic Newtonian mode (0,3,1): upper panel, real part of the fluctuating velocitylf{ffile lower
panel, imaginary part o®(1|y). Solid lines,¥,(1|y); dashed linesW(1]y); and dash-dotted lines,(1]y).

is real in both flows, implying that the mode does not propa-the relatively short channel length in our computation. It is
gate, neither in th& nor in thez direction. Moreover, for this  known that in longer channels, the “roll” modes become
particular modeg,=0, i.e., the fieldP ,(n=1|r) is constant oscillatory modes with a finite value of, .

in x. It belongs to the class of nonpropagating roll modes For the sake of completeness, we present in Fig. 9 the
discussed in_Rei[lS]. The figure presents_ an isosurfacg of hortrait of a higher-order viscoelastic mode, namé&y,
the streamwise component of the velocity field assomate_(os), p=15. We see that for this mod#,, is essentially

with the mode, ®,(n=1|r)=const. The spanwise wave- ,re|y imaginary, wherea¥ , and ¥, are essentially purely
length of the mode i3,=A,/q,=27H/3, and it appears to real. In fact, this particular mode is very low in energy, and
be confined relatively close to the channel walls. we present it just to demonstrate that the numerics is still not

A further pictorial presentation of the Newtonian mode noisy even for rather low energy modes.
(0,3,) is shown in Fig. 8, where the real part of the mode
(top panel and imaginary par{bottom panel are plotted
separately. From the plots it is apparent that the mode is
more or less localized in the vicinity of the walls, as already The full comparison between the first 30 modes of the
commented. The phase difference between the various corfdewtonian and viscoelastic flows can be seen in Table I, in
ponents is also worth mentioning. Comparing the top and th&hich these modes are listed together with their enéngy
middle panels, the streamwise and spanwise compofents percent of the total sum of energiedlso included in the
and ¥, are real for ally, while the wall-normal component table is the cumulative sum of energies up to the mode listed.
¥, has a constant phase lag#f2 with respect to the other To understand the table, we recall that for each valugptbe
two, i.e., it is purely imaginary. modes are ordered by their energy and labeledpbyhe

We note that although the first, most dominant mode, isverall energy label is1y or nye. In the columns of the
the same for the two flows, the actual energy associated withiscoelastic modes, instead of writing,e in the obvious
this mode is twice as large as in the viscoelastic mode. Thigcreasing order, we provided the value of the Newtonian
is typical for all the leading modes in the viscoelastic flow asindex ny for which the viscoelastic mode has the highest
compared with the Newtonian flow; this central point of dis- matching parameter. Thus, for example, the second leading
tinction between the two flows will be addressed in the fol-viscoelastic mode withn,c=2 matches almost perfectly
lowing section. The agreement between the leading modesith the sixth Newtonian moday=6, etc. One major dif-
ends with the first one; the majority of higher modes changderence between the two flows that stands out from Table I is
in relative position in the energy descending ordering, aghe energy concentration in the few most dominant modes of
explained below. Note that all the seven leading modes iithe viscoelastic flow compared to the flat distribution of en-
both flows are associated wit,=0. This is surely due to ergy in the Newtonian flow. For example, the first, second,

2. Subdominant modes and energy redistribution

15 0.8
' i 7N -
: // \ / \ SN
0.4 FEEAY / \ / \
[ ’ \ 7 \ 7 A
-~ . \ 1/ \ / \ .
f 0 ! \ ] — ; o
g pJ \ i \ / \ !
8 L \. .I' \- ! \ II
\ / \ / \
041 N \ / v
N/ \, / N/
N
L57 035 0 0.5 087 03 0 05
y y

FIG. 9. Portrait of a typical viscoelastic high-order mode (0,3,15). Notations as in Fig. 8.
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TABLE I. Energy content of the first 30 eigenfunctions of the 1 — —
channel flow with and without polymers. Re125. r ’/,/»/‘/
0.8 ///
Newtonian Polymers [ T
Re =125 Re=125 = 06f e
® 04} e
Mode Energy Sum Mode Energy Sum o e
Ny (aw ap p) (%) (%) Ny (Elx, av P) (%) (%) 0.2:' /,/'/
1 (0,31) 3.893 389 1 (0,31) 8.625 8.63 1(’)0' s e e
2 (032) 3882 777 6 (0,21) 6.760 15.39 n
3 (02,1) 8.700 1147 4 (0.1,1) 6.580 21.97 FIG. 10. Energy sung(n)=3_,E(j) for the Newtoniar(solid
4 (0.11) 3.218 1469 3 (0.2,2) 5.352 27.32 lines and for the viscoelasti¢dashed linesflow. The sums are
5 (0.1.2) 3.027 17.72 5 (0,1,2) 4.780 32.10 computed in their respective energetic ordering. The Reynolds num-
6 (0,2,2) 2.828 20.55 2 (0,3,2) 4.382 36.48 ber is Re=125.
7  (04,1) 2082 2263 7 (0,4,1)  2.477 38.96
8 (0,4,2) 1.624 2425 9 (1,2,1) 2.095 41.05 C. The energy spectrum
9 (1,2,1) 1.568 25.82 8 (0.4,2) 1.934 42.99 = A interesting and illuminating way to discuss the differ-
10 (13.1) 1364 2719 16  (1.2.2) 1.610 44.60 gnce petween the two flows is provided by the energy spec-
11 (141) 1276 2846 18 (1,1,1)  1.584 46.18 trym. It was proposed in Ref4] that the main difference
12 (132) 1265 29.73 12  (1,3,1) 1527 47.71 between the spectra of the two flows should appear in the
13  (05,1) 1.226 30.95 14 (1,1,2) 1.431 49.14 position of the dissipative scale that separates a spectral
14 (1,1,1) 1.179 32.13 10 (1,3,2) 1.336 50.47 power law from exponential decay. The increase of the dis-
15 (1,4,2) 1.112 3324 17  (0,5,1) 1.282 51.76 Sipative scale was indeed observed in recent DNS of ho-
16 (1,2,2) 1.081 3432 45  (0,0,1) 1275 53,03 Mogoneous isotropic turbulence in the FENE-P mddé].
17 (052) 1.014 3534 19 (0,1,3) 1.272 54. i';']?/‘(’)"lf’/‘éetrﬁéheenzrr:iegér:teasi;‘i';sg'Zg;:lztse that important changes
18 (1.1,2) 1.010 36.35 11 (14,1) 1.036 55.34 In Fig. 11, the energy is plotted for the two flows as a
19 (0.13) 1000 37.35 15  (14.2) 1035 56.37 fnction ofn. The Newtonian case displays a spectral plateau
20 (151) 0817 3817 21  (0,1,4) 1015 57.39 for the most dominant modes, which crosses over to a power
21 (014) 0804 3897 13 (052)  0.967 58.36 J]aw for ny=8. In the case of the viscoelastic flow, the pla-
22 (1,52) 0.792 39.76 43 (0,0,2) 0.801 59.16 teau is dramatically highehut also the power law changes
23 (2,1,1) 0.620 40.38 20  (1,5,1) 0.636 59.79 its slope It appears that the whole spectral curve is tilted in
24 (2,2,1) 0.586 40.97 22 (1,5,2) 0.620 60.41 favor of the energy containing modes and on the expense of
25 (2,3,1) 0562 4153 37 (1,1,3) 0614 61.03 the lower energy modes and the dissipative modes.
26 (16.1) 0561 42.09 131  (0,0,3) 0571 61.60 | The glﬁerence _betwe_ehn tne powetr) Iavl\;s .car:j ?e mahde
2. (06.1) 0.554 42.64 31 (123) 0.536 62.13 CKgl?TqirgoryO\f?g/]vpgrlm?gmtvego?st ('::a;r; re(leat(i)v;i;rllgrglen\jvn; e
28 (2.2.2) 0519 43.16 68  (0,15) 0.495 62.63 can expect the flow to isotropiZ&9,20, and Fourier modes
29 (1,6,2) 0512 4368 47 (1,1,4) 0.493 63.12
30 (2,32) 0511 4419 41  (0,23) 0.489 63.61

10" g
107}

and third dominant viscoelastic modes have all twice the 107
energy of the corresponding first, second, and third dominant g _ .}
Newtonian modes. The sum of the first four viscoelastic en- ™ ;
ergies contain as much as as the first ten Newtonian modes. 10°¢
The first 15 viscoelastic modes already contain more than 10_6;
50% of the energy, whereas one needs to collect as many as j

80 Newtonian modes to reach the same fraction of the total o 101 ‘ 102 = 103
energy. In Fig. 10, we display the suf‘(m):E?:lE(j) as a n

function of n for both flows, where the sum is computed in £, 11. Log-log plots of the energy distributid, vs mode

the respective energy ordering. We note that the differencggexn for the Newtonian casesolid line) and the viscoelastic case
between the two curves is established within the first tengashed ling The rough K41 prediction(39) is shown by the
modes; for larger values of the lines are almost parallel, dashed-dotted line. The Newtonian and viscoelastic dependencies
indicating a similar energy distribution between the lessare shown in their own energetic ordering. The Reynolds number is
dominant modes. Re,=125.
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FIG. 12. Plot of the energy contefih percentage of the total ~
energy for the Newtoniar(solid line) and viscoelasti¢dashed ling FIG. 13. Energy of the most energetic modes for a giggn
empirical modes. Both cases are plotted as a functiom of =0 as a function off,. p=1 modes are represented by circles and

p=2 modes by triangles. They are connected by solid lines for
would again become the best. In this asymptotic situatiorNewtonian modes, and by dashed lines for viscoelastic modes.
(neglecting intermittency correctionghe spectruni(k) is

expected to b&(k) k3 In an isotropic environment, we relevant ones. Nevertheless, we expect that drag reduction
also expect that is proportional to the volume of the sphere would always be associated with a substantial increase in the
of radiusk, i.e.,nxk®. Thus, we can expect for large values energy containing modes, whatever these are for a given flow
of n, configuration.

18 nlarge. (39

E,xn
V. CONCLUSIONS
The law proposed in Eq39) is displayed as the dashed-
dotted line in Fig. 11. We see that it is in rough agreememdu
with the power-law section of the Newtonian spectrum, but itv
is certainly not in agreement with the viscoelastic spectrurqn channel configuration at the same friction Reynolds num-
which, as mentioned before, is becoming steeper on th

whole. This is a clear demonstration of the increase in energy..- Our main aim is to understand the mechanism of drag
' 9eduction. Since drag reduction involved modifications of the

S\f/;her:n:srgﬁhcstnésg]rn?\gﬁ'oc()jvi(ser?lgvtvhge?t(iginc?fetr?; t\ngcztglzr%ean flow and of the large scale gradients in the flow, we are
prop P Fhotivated to understand more the energy containing modes,

glcosgiﬁ;‘tjrgengSgtomarﬁeacoﬁggﬁtr;%lor?'g?fﬁebuglra:;f‘rr: rather than focusing only on phenomena of small scales. To
P P poly is end, we have found first the list of empirical modes that

the degree of drag reduction. represent the velocity field in an optimal way in an energy

What emerges from this study is that the understanding 0Eiecreasing order. The first important discovery was that this

drag reduction lies in the reordering and energy redlstrlbu“fSt contains the very same modes for the Newtonian and

nomena further. we consider now the enerav contents of tr;%/'iscoelastic flows. We propose that this finding will offer a
’ 9y uge simplification in any future theory of drag reduction.

YISCOGl?.StIC modes f)rdere.'d DX '”Ste?“?' of the|r. own order- While we cannot offer a clean explanation of this finding, we
ing. This plot(see Fig. 12is a very V.IVId graphic represen- can proceed at this time taking the approximate invariance of
tation of the data of Table I, stressing very strongly an thghe modes as an empirical fact. What needs to be understood

concentration of energy in the dominant viscoelastic modess just the energy distribution and reordering of the modes in
which are however rearranged in dominance compared to th@e viscoelastic case.

focus on the most energetic modes. Noticing from Table ljiffers in a fundamental way from the approach presented,
Ehat all the dominant modes in both flows are assoglated Withgy example, in Refs[2,4,18. The thinking there focuses on
0x=0, we consider next these modes as a functiog,dbr  the energy cascade in the turbulent flow, and on the modifi-
p=1,2. In Fig. 13, we show the energy of these modes. Weation of the small dissipative scales. Roughly speaking, the
note that the dramatic redistribution of energy occurs onlymaximal gradients of the velocity are estimated from balanc-
for the most energetic modes wigh=1; The less energetic ing the right-hand side of Eq4). Neglecting the statistical
modes are not affected much. Already the modes with correlation between the conformation tensor and the velocity
=2 are seen in the figure to be affected in a negligible waygradient, one can estimate the maximal velocity gradient by
In our opinion, this is a clear message that to understand dra@u/dr )~ 1/7,. Thus, the matching of the polymer relax-
reduction, we need to understand the rearrangement of thagion time with an eddy turnover time is used to predict a
energy containing modes. For our flow configuration, thedecrease in the maximal velocity gradient, which is inter-
most relevant are the modes that are space homogeneouspreted as drag reduction. We take an exception to this ap-
the spanwise direction. It should be stressed, however, th@roach. First, a careful analysis of the space dependence of
different geometries, and even channel geometry with differthe conformation tensor shows that it is highly correlated
ent aspect ratios, may bring forth other modes as the mostith the velocity gradients(see, for example, Refs.

In this paper, we initiated a systematic study of drag re-
ction on the basis of DNS of the FENE-P model. We in-
estigated simulations of Newtonian and viscoelastic flows
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[6,17,21). Thus, the estimate taken above is questionable athange with the viscoelastic subsystem represented by the
best. But, moreover, we have shown that the main changesonformation tensor fiel@R(r,t) [17,21. Such an investiga-
between the Newtonian and the viscoelastic modes occur ifion calls for measuring additional statistical objects such as
the energy containing modes. The energy containing modesird-order correlation functions. The necessary simulations

are highly anisotropic, they are not Fourier modes, and theigre in progress and the results will be published elsewhere.
connection to the small scales where the isotropised Kol-

mogorov picture is tenable is very unclear. A theory that

assumes a K41 spectrum down to a modified viscous sca}Ie ACKNOWLEDGMENTS

does not appear tenable for the FENE-P flow, as seen in Fig.
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