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Drag reduction by polymers in turbulent channel flows: Energy redistribution between invariant
empirical modes
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We address the phenomenon of drag reduction by a dilute polymeric additive to turbulent flows, using direct
numerical simulations~DNS! of the FENE-P model of viscoelastic flows. It had been amply demonstrated that
these model equations reproduce the phenomenon, but the results of DNS were not analyzed so far with the
goal of interpreting the phenomenon. In order to construct a useful framework for the understanding of drag
reduction we initiate in this paper an investigation of the most important modes that are sustained in the
viscoelastic and Newtonian turbulent flows, respectively. The modes are obtained empirically using the
Karhunen-Loe´ve decomposition, allowing us to compare the most energetic modes in the viscoelastic and
Newtonian flows. The main finding of the present study is thatthe spatial profile of the most energetic modes
is hardly changed between the two flows. What changes is the energy associated with these modes, and their
relative ordering in the decreasing order from the most energetic to the least. Modes that are highly excited in
one flow can be strongly suppressed in the other, and vice versa. This dramatic energy redistribution is an
important clue to the mechanism of drag reduction as is proposed in this paper. In particular, there is an
enhancement of the energy containing modes in the viscoelastic flow compared to the Newtonian one; drag
reduction is seen in the energy containing modes rather than the dissipative modes, as proposed in some
previous theories.

DOI: 10.1103/PhysRevE.67.056312 PACS number~s!: 47.27.2i, 47.27.Nz, 47.27.Ak
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I. INTRODUCTION

‘‘Drag reduction’’ refers to the interesting observation th
the addition of a few tens of parts per million~by weight! of
long-chain polymers to turbulent fluids can bring abou
reduction of the friction drag by up to 80%@1#. Obviously,
the phenomenon has far reaching practical implications,
sides being challenging from the fundamental point of vie
In spite of an intense interest in an extended period of t
@2–4#, Sreenivasan and White@1# recently concluded that ‘‘it
is fair to say that the extensive-and continuing-activity h
not produced a firm grasp of the mechanisms of drag red
tion.’’ In this paper, we want to advance on the basis o
recent direct numerical simulation~DNS! of model vis-
coelastic hydrodynamic equations@5–8#. Such DNS’s show
unequivocally that drag reduction is reproduced by mo
equations such as the finitely extensible nonlinear ela
~Peterlin’s version! ~FENE-P! model. From the theoretica
point of view, this is significant, since it indicates that t
phenomenon is included in the solutions of the model eq
tions. Understanding drag reduction then becomes a u
challenge of theoretical physics.

Our thinking here is motivated in part by a recent analy
of the stability of laminar channel flows that are subject
space dependent effective viscosity@9,10#. It turned out that
even the small viscosity gradients can lead to a giant st
lization of the most unstable modes, both for primary a
secondary instabilities. In these cases, one can understan
phenomenon completely by examining the energy budge
the putative unstable modes and their interaction with
mean flow; the most important observation had been that
1063-651X/2003/67~5!/056312~11!/$20.00 67 0563
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the the existence of viscositygradientspositioned at a stra-
tegic distance from the wall, which is crucial for the exi
tence of a large effect. It seems desirable to do someth
similar for the viscoelastic turbulent flows as well~in which
the space dependent effective viscosity arises due to di
ential stretching of the polymers!. But, in distinction from
primary and secondary instabilities, where it is obvious t
which are the relevant modes, for the turbulent flow, the
are not knowna priori. We therefore decided to first initiat
a systematic study of the empirical modes that are susta
in the turbulent flow, and then to discuss their interacti
with the mean flow and with the polymeric additive, the
stabilization or destabilization when we compare the v
coelastic to the Newtonian flow, and their energy budget
this paper, we present the first results of this study.

It is natural to focus on the most energetic modes in
two respective flows. After all, if we drive a Newtonian an
a corresponding viscoelastic flow with the same work inp
per unit time and mass, drag reduction exhibits itself as
increase in the throughput of the viscoelastic flow. In oth
words, the kinetic energy is increasing. Since the kinetic
ergy is dominated by the energy containing modes, we n
to understand how these are affected by the addition of p
mers to a Newtonian fluid. For channel flows~in distinction
with homogeneous periodic flows!, the energy containing
modes arenot Fourier modes, but rather modes that satis
the boundary conditions. A first step therefore in studyi
drag reduction in channel flows is the identification of t
energy containing modes and the study of their sensitivity
the polymeric additives.

We will demonstrate that we can determine with reas
able accuracy at least the first 30 most energetic modes
are sustained in the turbulent flow, for both the FENE-P a
©2003 The American Physical Society12-1
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the Navier-Stokes equations~run at the same friction Rey
nolds number, and see below for details!. These modes can
be arranged in descending order according to their rela
energy. Unexpectedly, we find that the nature of the m
relevant modes is unchanged in the two cases. On the o
hand, the energies associated with the modes and their
tive ordering are changed; some modes that are energe
one flow are strongly suppressed~their energy decreases by
factor of 4! in the other flow, and vice versa. Most impo
tantly, the few most energetic modes of the viscoelastic fl
contain a lot more energy than the same number of m
energetic Newtonian modes. We therefore propose that
reduction should be understood by examining the dynam
and relative stability of the energy containing modes rat
than focusing only on the dissipative end of the spectrum
proposed, for example, in Ref.@4#.

In Secs. II A and II B, we summarize the FENE-P equ
tions and the numerical approach. In Sec. II C, we pres
the essential results regarding the observation of drag re
tion. In Sec. III we review the Karhunen-Loe´ve method for
determining the best empirical modes, and apply it to
problem at hand. In Sec. IV, we discuss the results, dem
strate the invariance of the modes, and present the rela
ordering. Section V is devoted to the discussion of the fi
ings and of future works.

II. EQUATIONS OF MOTION AND DIRECT
NUMERICAL SIMULATIONS

A. The FENE-P model for dilute polymers

The addition of a dilute polymer to a Newtonian flu
gives rise to an extra stress tensorT(r,t), which affects the
Navier-Stokes equations

]u

]t
1~u•“ !u52“p1ns¹

2u1“•T,

“•u50. ~1!

Here, u(r,t) is the solenoidal velocity field,p(r,t) is the
pressure, andns is the viscosity of the neat fluid. The add
tional stress tensorT is not known exactly, and needs to b
modeled. There are a number of competing derivations,
Refs.@11,12#. In our work, we adopt the FENE-P model th
is derived on the basis of a dumb-bell model for the po
mers@11,12# and is known to reproduce the phenomenon
drag reduction. In this model,T is determined by the ‘‘poly-
mer conformation tensor’’R according to

T~r,t !5
np

tp
F f ~r,t !

r0
2

R~r,t !21G . ~2!

Here,1 is the unit tensor,np is the viscosity parameter,tp is
the relaxation time for the polymer conformation tensor, a
r0 is the parameter that in the derivation of the model sta
for the rms extension of the polymers in equilibrium. T
function f (r,t) limits the growth of the trace ofR to a maxi-
mum valuerm:
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f ~r,t ![
rm

2 2r0
2

rm
2 2Rgg~r,t !

. ~3!

The model is closed by the equation of motion for t
conformation tensor which reads

]Rab

]t
1~u•“ !Rab5

]ua

]r g
Rgb1Rag

]ug

]r b

2
1

tp
@ f ~r,t !Rab2r0

2dab#. ~4!

The model is derived by assuming that the polymer can
characterized completely by an end-to-end vector distan
Nevertheless, the resulting equations could be written on
basis of plausible arguments including up to quadratic te
in gradients and available tensors. For our purposes, the
curacy of the model in reproducing quantitatively all the ph
nomena of turbulence in viscoelastic fluids is not an issue
concern. We are mainly interested in the fact that these eq
tions were simulated on the computer in a channel geom
and exhibited the phenomenon of drag reduction as
cussed below. Our aim is to understand drag reduction wi
the FENE-P model.

B. Direct numerical simulations

A simple flow geometry that exhibits the phenomenon
drag reduction is channel flow between two parallel plan
separated by the distance 2H in the y direction, see Fig. 1.
The computational domain is periodic in the two directio
parallel to the wall~streamwisex, spanwisez). The Navier-
Stokes equation~1! is written in terms of the wall-norma
component of velocityuy(r,t) and the vorticity vy(r,t),
wherev5“3u,

]uy

]t
1~u•“ !uy52

]p

]y
1ns¹

2uy1¹bTby ,

]vy

]t
1~u•“ !vy5~v•“ !uy1ns¹

2vy1eybg¹b¹dTdg ,

~5!

FIG. 1. Geometry of the channel flow between two para

planes separated by 2H in they direction. The mean velocityŪ(y)
is oriented along thex axis ~streamwise direction!. The three-
dimensional velocity fluctuations are space homogeneous in
x-z plane, wherez is usually called the spanwise direction. It
customary to use the Fourier decomposition in this planeq
5(qx ,qz) is the corresponding two-dimensional wave vector.
2-2
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DRAG REDUCTION BY POLYMERS IN TURBULENT . . . PHYSICAL REVIEW E 67, 056312 ~2003!
with eabg the fully antisymmetric Levi-Civita` tensor. Given
uy andvy , the components of the velocity field in the tw
directions parallel to thex-z plane follow from the continuity
equation and the definition ofvy ,

“ i•ui52
]uy

]y
, “ i3ui5vy , ~6!

where the subscripti denotes projection of vectors on thex-z
plane. The system of Eqs.~5! and ~6! is one of the standard
formulations used for the direct numerical simulation of tu
bulent channel flows, since the procedure yields a soleno
velocity field to machine accuracy.

In light of the periodicity in thex-z plane, it is natural to
expand the planar components of the velocity field in Fou
modes. For the wall-normal direction, one uses Chebys
polynomials. The time stepping is carried out by a mix
Crank-Nicolson and Runge-Kutta scheme for the viscous
the nonlinear terms, respectively. The integration in the n
mal direction is done by the Chebyshevt-method and a stan
dard dealiasing technique is adopted for the nonlinear ter
The typical simulations have been performed on a comp
tional grid of 963129396 nodes in a domain of dimension
2pH32H31.2pH. Turbulence is maintained by enforcin
the same constant pressure gradient for the correspon
Newtonian and viscoelastic simulations.

In discussing the simulations, one notes that the chan
half-heightH is only one of the parameters that sets up
external length scale. An additional important control para
eter is the enforced pressure gradient at the wall, which
termines the friction. Denoting by pointed brackets an av
age over time the friction parameter is defined as

t̄w5H K ]p

]xL . ~7!

This is the basic control parameter of the flow. By consid
ing also the overall kinematic viscosityn f5ns1np , the tra-
ditional friction Reynolds number is defined as

Ret5
utH

n f
, ut5At̄w, ~8!

whereut is the friction velocity. As customary in wall tur
bulence, one may introduce the inner, or viscous, len
scale

,5
n f

ut
. ~9!

The inner velocity scaleut has its counterpart bulk velocit

U05
1

2HE dy^ux&. ~10!

Correspondingly, we have the outer and inner time sca
T05H/U0 andn f /ut

2 , respectively.
In the sequel, all quantities are made dimensionless un

stated otherwise. Those made dimensionless with respe
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the appropriate inner scale will be denoted by the supersc
1; no special symbol is used to denote normalization by
outer scale.

Finally, there are parameters associated with the polym
Foremost is the Deborah number that is defined as the r
of the relaxation timetp and a typical time scale of the fluid
motion, i.e.,

De5
tp

T0
. ~11!

The parameterr p5np /ns measures the relative viscosity o
the polymers with respect to the Newtonian solvent, and
nonlinear characteristics of the spring is defined in terms
the ratiorm

2 /r0
2 .

In all our comparisons of Newtonian and viscoelas
simulations, the friction Reynolds number is kept constan
a typical value Ret5125. The correspondence between t
two flows is obtained by fixing the computational doma
and choosing for the Newtonian case a viscosity equal to
overall viscosity of the solution. The parameters chosen
all the viscoelastic simulations are De525, hp50.1, and
rm

2 /r0
251000.

C. Overview of drag reduction

In this section, we review briefly the main results of th
present simulations, which demonstrate the phenomeno
drag reduction. For a more detailed description, see Ref.@8#.
The analysis presented in the following sections employs
very same DNS.

In comparing the viscoelastic and the Newtonian flow
we maintain the friction Reynolds number~8! fixed. We re-
iterate that to achieve this we need to choose the viscosit
the Newtonian flow properly, since the viscoelastic w
stress contains a small viscoelastic contribution,

t̄w5ns

dŪ

dy
1T̄yx . ~12!

The component of the extra stressTyx does not vanish on the
average, contributing in our simulation about 10% of t
total drag.

The main observations regarding drag reductions are
follows.

~i! For a fixed mean pressure gradient at the wall,
viscoelastic flow exhibits an increased flow rate through
channel, see Fig. 2. In this figure, the mean profiles in
streamwise direction are shown, the other means vanish
symmetry:

Ūx~y!5Ū~y![^ux~r,t !&,

Ūy~y!5Ūz~y!50. ~13!

The increase in the throughput entails an increased bulk R
nolds number,
2-3



st
aw

la
g
e

i
th
a
n
in

ng
e

is
f t

his
ple,

ns.

ig-

o-
to
ow,
ns
en-

he
ri-
o-

e

sic

oc-

d

DE ANGELIS et al. PHYSICAL REVIEW E 67, 056312 ~2003!
Reb5
U0H

n f
. ~14!

~ii ! Some typical length scales increase in the viscoela
flow. The data in Fig. 2 can be recast in terms of the log l
of the wall,

Ū15
1

k
lny11A, ~15!

wherek.0.4 is the Von Karman constant. The constantA
depends on the thickness of the buffer plus viscous sub
ers, defined as the distance between the wall and the be
ning of the log region. The log law exists equally well for th
viscoelastic as for the Newtonian flow with the samek, but
the numerical value of the constantA is substantially in-
creased in the former. This thickening of the buffer layer
directly related to the increased flow rate. The effect of
thickening buffer layer can also be measured by the incre
of the spanwise scale of the streamwise velocity fluctuatio
Decomposing the velocity field into a mean and a fluctuat
part,

ua~r,t !5Ūa~y!1ũa~r,t !, ~16!

one introduces the correlation tensor

Kab~r,r8![^ũa~r,t !ũb~r8,t !&. ~17!

In Fig. 3, we showKxx(r,r8) for r5(x,y,z), r85(x,y,z
1Z). @Note that by homogeneityKxx5Kxx(y,Z)]. Figure 3
demonstrated the increase in the spanwise correlation le
of the streamwise velocity fluctuations, which can be defin
as

Lxz~y![
1

Kxx~y,0!
E dZKxx~y,Z!. ~18!

~iii ! A comparison of the time signals between the v
coelastic and the Newtonian cases shows an alteration o

FIG. 2. Mean velocity profiles for the Newtonian and for th
viscoelastic simulations with Ret5125. Solid line: Newtonian.
Dashed line: viscoelastic. The straight lines represent the clas
log law, Eq.~15!.
05631
ic

y-
in-

s
e
se
s.
g

th
d

-
he

characteristic frequencies for the viscoelastic model. T
corresponds quite well to the experimental data, for exam
of Luchik and Tiederman@13#, in which a decrease of the
bursting frequency is observed in drag reducing solutio
We do not reproduce these results here.

~iv! Finally, the root mean square fluctuations change s
nificantly as a function ofy. Denoting

Ua~y![A^uũa~r,t !u2&, ~19!

we display in Fig. 4 they dependence of the three comp
nentsa5x,y,z. The streamwise fluctuations are shown
increase with respect to the corresponding Newtonian fl
while both the spanwise and the wall-normal fluctuatio
decrease, in qualitative agreement with available experim
tal results@13#.

In conclusion, the FENE-P model is shown to exhibit t
phenomenon of drag reduction in close similarity to expe
mental observations. In addition, DNS of this model pr

al

FIG. 3. Two point spanwise correlation of the streamwise vel
ity component,Kxx(y0 ,Z)/Kxx(y0,0): viscoelastic flow~dashed
line!, Newtonian flow~solid line!. Ret5125, y0

157.

FIG. 4. Velocity fluctuations, normalized by friction velocityut

for the viscoelastic~dashed line! and the Newtonian flow~solid
line!. In both cases,Ux , Uy , andUz are given by solid, dashed, an
dotted lines, respectively.
2-4



he
d
nd
he

c
th
. I
t
il
t
e

to
-

o
e

at
et
es
b

t

o
n-
t

on

th

e

re

c-

f

ms

eld

n

es

or-

ing

DRAG REDUCTION BY POLYMERS IN TURBULENT . . . PHYSICAL REVIEW E 67, 056312 ~2003!
vides complete information about the velocity field and t
covariance tensor fieldR(r,t) as a function of space an
time. Thus, a sufficiently efficient analysis of this model a
its turbulent flow pattern should provide a insight into t
mechanism of drag reduction.

III. ANALYSIS USING EMPIRICAL MODES

In this section, we present the analysis of the differen
between viscoelastic and Newtonian flows in terms of
empirical modes that are sustained in the turbulent flow
choosing a method to extract the modes, we are led by
desire to find the ‘‘best’’ modes, and best in our case w
mean those that are most energetic. In fluid mechanics
energy is quadratic in the field, so best is related to closen
in the L2 norm. As is well known, the standard method
find the best representation inL2 norms is the Karhunen
Loéve method. The aim of the Karhunen Loe´ve method is to
provide a set of modes that optimally decompose the field
interest, in our case the velocity field averaged over tim
The approach is guaranteed to yield the best set of trunc
modes, meaning that the field cannot be approximated b
~in L2 norm! by any other set of the same number of mod
The method had been applied to fluid mechanics in a num
of contexts, see, for example,@14–16# for details and rel-
evant references. We first adapt the Karhunen-Loe´ve method
to the present context, and then discuss the results of
analysis.

The core object for the analysis is the simultaneous c
relation function of the velocity fluctuations, which was i
troduced already in Eq.~17!. Due to stationarity, this objec
is time independent, and due to homogeneity in thex andz
direction, we can write

Kab5Kab~x82x,z82z;y,y8!. ~20!

In the translationally invariant directionsx-z one cannot do
better than the Fourier decomposition. Accordingly, we c
sider the partly decomposed objectQ̂(quy,y8) defined as

Q̂~quy,y8![
1

Ni
(
ri

Kab~x82x,z82z;y,y8!

3exp$2ı@qx~x82x!1qz~z82z!#%. ~21!

We denote the discrete two-dimensional wave vector in
x-z plane as q5(qx ,qz)5(q̃x2p/Lx ,q̃z2p/Lz), where
q̃x ,q̃z are integers.Ni5NxNz and the sum is taken over th
discrete set ofx-z points with ri5( j xLx /Nx , j zLz /Nz) the
x-z projection ofr.

The nontrivial empirical modes are obtained from the
maining dependence ony,y8, for each given planarq. The
Karhunen-Loe´ve method consists of finding the eigenfun
tions Cab(q,puy), which solve the eigenvalue equation

E
21

1

Q̂ab~quy,y8!Cb~q,puy8!dy85E~q,p!Ca~q,puy!.

~22!
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Here,E(q,p) is the energy associated with the mode (q,p),
ordered in decreasing energy order, with a givenq wave
vector in the wall parallel directions, andp mode number in
they direction, orthogonal to the plane walls. Denoting byE
the total energy in the system, we have

E[E d3r
ũ2

2
5(

q,p
E~q,p!. ~23!

The modes labeled by (q,p) can be relabeled in order o
decreasing energy by introducing an indexn. In this notation,
the modes whose associated energy isEn5E(q,p) are de-
noted by

Ca~nuy![Ca~qn ,pnuy!, ~24!

where (qn ,pn) is the label of thenth mode. It is useful to
introduce also a set of fields indexed byn,

Fa~nur!5Ca~nuy!exp@ i ~qn•ri!#. ~25!

These functions are orthogonal in the sense

1

2Ni
(
ri

E
21

1

dyFa~nuy,ri!Fa* ~n8uy,ri!5dnn8 . ~26!

The fluctuation velocity field can be now expanded in ter
of these fields,

ũa~ t,r!5(
n

an~ t !Fa~nur!. ~27!

The main advantage of the Karhunen-Loe´ve method is that
any finite truncation of this expansion can be shown to yi
the best approximation for the velocity field~in the L2

norm!. Moreover, due to the symmetry of the correlatio
matrix, the modes are orthonormal~after suitable normaliza-
tion!, and correlation functions in the basis of these mod
are diagonal:

^anan8
* &5Endnn8 . ~28!

Similarly, one can have an optimal representation of the c
relation matrix itself as

Kab5(
n

EnCa~nuy!Cb~nuy8!exp@ iqn•~ri2ri8!#.

~29!

In analyzing the DNS, the modes are determined by us
an expansion in terms of Chebyshev polynomialsTk(y) in
the y direction. Denoteyj as thej th node in the list ofNy
Chebyshev nodes,

yj52cosS j
p

Ny
D , j 51, . . . ,Ny , ~30!

and express
2-5
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Ca~q,puy!5 (
k50

Ny21

Ĉa~q,puk!Tk~y!. ~31!

Then, Eq.~22! is discretized as

(
k50

Ny21

Aab~qu j ,k!Ĉb~q,puk!

5E~q,p! (
k850

Ny21

Ĉa~q,puk8!Tk8~yj !, ~32!

where

Aab~qu j ,k![ (
j 851

Ny

Q̂ab~quyj ,yj 8!Tk~yj 8!wj 8 , ~33!

with wj the integration weights.
For a givenq, Eq. ~32! results in a linear algebraic eigen

value problem of order (Ny3Ny), with the pth eigenvector
given by Ĉa(q,puk), k50, . . . ,Ny and the corresponding
eigenvalueE(q,p). Since we need to solve for every discre
wave vectorq, there exist in totalNxNz eigenvalue problems
to be solved in order to determine the full set of eigenfu
tions. From the discrete eigenvectors, the corresponding
crete modes are constructed according to the discrete an
of Eq. ~25!,

Fa~q,puri ,yj !5Ca~q,puyj !exp@ i ~qn•ri!#, ~34!

where Eq.~31! is used to evaluateCa at the Chebyshev
nodes. The discrete modes are normalized according to
discrete version of Eq.~26!,

1

2Ni
(
j 51

Ny

(
ri

Fa~q,puri ,yj !Fa* ~q,puri ,yj !wj51. ~35!

In practice, we ran DNS with and without polymers f
5000 large-eddy turnover timesT0, see Sec. II B, in statisti-
cally stationary conditions. The time step used for time
vancement, in terms of viscous unitsn f /ut

2 , Sec. II B, is
Dt150.05. Since the same pressure gradient is enforce
the two cases, the friction velocity is identical, while the bu
velocity increases by 24% in the viscoelastic simulatio
This corresponds to a reduction of the large-eddy turno
time, T0.

We have collectedNfields fields, Nfields.100, displaced in
time by 50T0. These fields were used to construct the d
crete correlation function, Eq.~17!, at the nodes of the com
putational grid. Eigenvalues and eigenvectors of its disc
Fourier transform in the wall parallel directions have th
been evaluated, according to Eq.~32!. The modes corre-
sponding to the computed eigenvectors have been arra
in the order of decreasing eigenvalue. From Eq.~35!, the
eigenvalues correspond to the average energies in the
sidered modes, so that the chosen arrangement is in fa
ordering in terms of decreasing energy content. Wh
needed, the index of the energetic ordering of the Newton
05631
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~N! and viscoelastic~VE! simulations will be denoted bynN
andnVE respectively, dropping the subscript whenn refers to
both cases.

IV. ANALYSIS AND RESULTS

A. The dominant modes are approximately invariant

The first discovery in the study of the empirical mod
was admittedly unexpected for the present authors, an
hindsight very serendipitous for the discussion of drag red
tion. We found thatthe dominant modes are approximate
invariant. In other words, the same modes that carry a s
able fraction of energy of the viscoelastic flow appear ess
tially unchanged in the Newtonian flow, having practica
the same spatialy dependence. We will first demonstrate th
unexpected finding, and later focus on the difference
tween the two flows.

To discuss meaningfully the correspondence between
empirical modes in the two cases, we seek a criterion
matching the viscoelastic modes to the corresponding N
tonian modes. This can be done easily, since both set
modes form a complete orthonormal basis for solenoi
fields in the same domain. Each viscoelastic mode can t
be expanded in terms of the Newtonian set,

Ca
VE~q,pVEuy!5(

pN

A~q,pVEupN!Ca
N~q,pNuy!. ~36!

The complex amplitudeA(q,pVEupN) is given by the projec-
tion of the viscoelastic modepVE on Newtonian modepN ,
with identical wall-parallel wave vectorq:

A~q,pVEupN!5
1

2Ny
(
j 51

Ny

Ca
VE~q,pVEuyj !Ca*

N~q,pNuyj !wj .

~37!

We find that all the most energetic modes of the viscoe
tic flow have one amplitude whose magnitude is close
unity. For example, we plot the absolute magnitu
uA(q,pVEupN)u as a function ofpN in Fig. 5 for the first three
most energetic viscoelastic modes. Each of these modes
plays an amplitude maximum very close to unity, implyin
that it matches well a single Newtonian mode. This pro
dure furnishes a correspondence between viscoelastic
Newtonian modes: a given viscoelastic mode correspond
the Newtonian mode for which the amplitudeuA(q,pVEupN)u
is maximal. This unambiguously associates a single Newt
ian mode to each viscoelastic mode. The value of the m
mal amplitude, hereafter calledmatching parameter, gives a
quantitative estimate of the difference in shape between
corresponding modes. A matching parameter equal to 1
plies an absolute identity between the two modes in the
ergy norm. The correspondence in the spatial structure
then be verified by a direct inspection. For instance, mat
ing modes for the cases discussed in Fig. 5, where the ma
ing parameter is well above 0.9, are almost indistinguisha
Physically, the matching parameter represents the fractio
the energy in the viscoelastic mode that is ascribed to
matching Newtonian mode. Figure 6 shows the match
2-6
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FIG. 5. Projections of the three most energetic viscoela

modes on the basis of the Newtonian best modes with the samq̃,

Ret5125. Panel ~a! the most energetic viscoelastic modeq̃
5(0,3), p51. This mode fits very well the most energetic mode
the Newtonian flow which is the same~0,3,1!. Panel~b! the second

most energetic viscoelastic modeq̃5(0,2), p51. This mode fits
very well the sixth most energetic mode of the Newtonian fl

~0,2,2!. Panel ~c! the third most energetic viscoelastic modeq̃
5(0,1), p51. This mode fits well the fourth most energetic New
tonian mode~0,1,1!.

FIG. 6. Matching parameter of the first 30 most energetic v
coelastic modes withcorrespondingNewtonian modes, Ret5125.
05631
parameter for the first 30 most energetic viscoelastic mo
(n

VE
<30). All the VE modes, except the 23rd and 29th, ha

a matching parameter above 0.9. We conclude that at lea
far as the most energetic modes are concerned, the sp
structure of the modes is almost not altered by the polym
Roughly speaking, this can be expressed by saying that
modes are approximately invariant, i.e., fixed in shape.For
practical purposes, the difference between the Newton
and viscoelastic empirical modes can be safely disregard.
Next, we discuss what changes from Newtonian to viscoe
tic turbulence.

B. The energy and the relative ordering change

In light of the first discovery, the second may be alrea
anticipated: although the dominant modes hardly chan
their energies and relative energy ordering change very
nificantly. We propose that understanding the change of
ergies and relative ordering of the modes will take us a lo
way in understanding drag reduction. We begin by comp
ing the most dominant modes in the two respective flow
Each empirical mode is identified by three numbe
(q̃x ,q̃z), andp, where as explained above,p corresponds to
the index of the energetic ordering for fixed wave vectorq.

1. The most dominant mode

In Fig. 7, we present pictorially the mode~0,3,1! which is
the most energetic for both the Newtonian and viscoela
simulation. Its amplitudea1(t),

a1~ t !5
1

2Ny
(
j 51

Ny

(
ri

ũa~ t,yj ,ri!Fa* ~n51uyj ,ri!wj ,

~38!

ic

f

-

FIG. 7. Isosurface of the streamwise component of the first m
energetic mode,F1(n51ur), which is the same for the Newtonian

and the viscoelastic flows, i.e., the modeq̃5(0,3), p51. In both
cases, Ret5125. Note that this mode is a nonpropagating ro
mode.
2-7
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FIG. 8. Portrait of the most energetic Newtonian mode (0,3,1): upper panel, real part of the fluctuating velocity profileC(1uy); lower
panel, imaginary part ofC(1uy). Solid lines,Cx(1uy); dashed lines,Cy(1uy); and dash-dotted lines,Cz(1uy).
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is real in both flows, implying that the mode does not prop
gate, neither in thex nor in thez direction. Moreover, for this
particular modeqx50, i.e., the fieldFa(n51ur) is constant
in x. It belongs to the class of nonpropagating roll mod
discussed in Ref.@15#. The figure presents an isosurface
the streamwise component of the velocity field associa
with the mode,Fx(n51ur)5const. The spanwise wave
length of the mode islz5Lz /q̃z52pH/3, and it appears to
be confined relatively close to the channel walls.

A further pictorial presentation of the Newtonian mo
~0,3,1! is shown in Fig. 8, where the real part of the mo
~top panel! and imaginary part~bottom panel! are plotted
separately. From the plots it is apparent that the mod
more or less localized in the vicinity of the walls, as alrea
commented. The phase difference between the various c
ponents is also worth mentioning. Comparing the top and
middle panels, the streamwise and spanwise componentCx
andCz are real for ally, while the wall-normal componen
Cy has a constant phase lag ofp/2 with respect to the othe
two, i.e., it is purely imaginary.

We note that although the first, most dominant mode
the same for the two flows, the actual energy associated
this mode is twice as large as in the viscoelastic mode. T
is typical for all the leading modes in the viscoelastic flow
compared with the Newtonian flow; this central point of d
tinction between the two flows will be addressed in the f
lowing section. The agreement between the leading mo
ends with the first one; the majority of higher modes chan
in relative position in the energy descending ordering,
explained below. Note that all the seven leading modes
both flows are associated withqx50. This is surely due to
05631
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the relatively short channel length in our computation. It
known that in longer channels, the ‘‘roll’’ modes becom
oscillatory modes with a finite value ofqx .

For the sake of completeness, we present in Fig. 9
portrait of a higher-order viscoelastic mode, namely,q̃
5(0,3), p515. We see that for this mode,Cz is essentially
purely imaginary, whereasCx andCy are essentially purely
real. In fact, this particular mode is very low in energy, a
we present it just to demonstrate that the numerics is still
noisy even for rather low energy modes.

2. Subdominant modes and energy redistribution

The full comparison between the first 30 modes of t
Newtonian and viscoelastic flows can be seen in Table I
which these modes are listed together with their energy~in
percent of the total sum of energies!. Also included in the
table is the cumulative sum of energies up to the mode lis
To understand the table, we recall that for each value ofq the
modes are ordered by their energy and labeled byp. The
overall energy label isnN or nVE. In the columns of the
viscoelastic modes, instead of writingnVE in the obvious
increasing order, we provided the value of the Newton
index nN for which the viscoelastic mode has the highe
matching parameter. Thus, for example, the second lea
viscoelastic mode withnVE52 matches almost perfectl
with the sixth Newtonian modenN56, etc. One major dif-
ference between the two flows that stands out from Table
the energy concentration in the few most dominant mode
the viscoelastic flow compared to the flat distribution of e
ergy in the Newtonian flow. For example, the first, seco
FIG. 9. Portrait of a typical viscoelastic high-order mode (0,3,15). Notations as in Fig. 8.
2-8



th
a

en
d
ha
y
ot

in
nc
te
l,
s

r-
ec-

the
ctral
is-
ho-

ges

a
au
wer
a-
s
in

e of

ade
the

e

3

9

7

2

0

8

6

5

9

60

18

71

14

47

76

03

30

34

37

39

36

16

79

41

03

60

13

63

12

61

um-

e

cies
r is

DRAG REDUCTION BY POLYMERS IN TURBULENT . . . PHYSICAL REVIEW E 67, 056312 ~2003!
and third dominant viscoelastic modes have all twice
energy of the corresponding first, second, and third domin
Newtonian modes. The sum of the first four viscoelastic
ergies contain as much as as the first ten Newtonian mo
The first 15 viscoelastic modes already contain more t
50% of the energy, whereas one needs to collect as man
80 Newtonian modes to reach the same fraction of the t
energy. In Fig. 10, we display the sumE(n)5( j 51

n E( j ) as a
function of n for both flows, where the sum is computed
the respective energy ordering. We note that the differe
between the two curves is established within the first
modes; for larger values ofn the lines are almost paralle
indicating a similar energy distribution between the le
dominant modes.

TABLE I. Energy content of the first 30 eigenfunctions of th
channel flow with and without polymers. Ret5125.

Newtonian Polymers

Ret5125 Ret5125

Mode Energy Sum Mode Energy Sum

n
N (q̃x , q̃z , p) (%) (%) n

N (q̃x , q̃z , p) (%) (%)

1 (0,3,1) 3.893 3.89 1 (0,3,1) 8.625 8.6

2 (0,3,2) 3.882 7.77 6 (0,2,1) 6.760 15.3

3 (0,2,1) 3.700 11.47 4 (0,1,1) 6.580 21.9

4 (0,1,1) 3.218 14.69 3 (0,2,2) 5.352 27.3

5 (0,1,2) 3.027 17.72 5 (0,1,2) 4.780 32.1

6 (0,2,2) 2.828 20.55 2 (0,3,2) 4.382 36.4

7 (0,4,1) 2.082 22.63 7 (0,4,1) 2.477 38.9

8 (0,4,2) 1.624 24.25 9 (1,2,1) 2.095 41.0

9 (1,2,1) 1.568 25.82 8 (0,4,2) 1.934 42.9

10 (1,3,1) 1.364 27.19 16 (1,2,2) 1.610 44.

11 (1,4,1) 1.276 28.46 18 (1,1,1) 1.584 46.

12 (1,3,2) 1.265 29.73 12 (1,3,1) 1.527 47.

13 (0,5,1) 1.226 30.95 14 (1,1,2) 1.431 49.

14 (1,1,1) 1.179 32.13 10 (1,3,2) 1.336 50.

15 (1,4,2) 1.112 33.24 17 (0,5,1) 1.282 51.

16 (1,2,2) 1.081 34.32 45 (0,0,1) 1.275 53.

17 (0,5,2) 1.014 35.34 19 (0,1,3) 1.272 54.

18 (1,1,2) 1.010 36.35 11 (1,4,1) 1.036 55.

19 (0,1,3) 1.000 37.35 15 (1,4,2) 1.035 56.

20 (1,5,1) 0.817 38.17 21 (0,1,4) 1.015 57.

21 (0,1,4) 0.804 38.97 13 (0,5,2) 0.967 58.

22 (1,5,2) 0.792 39.76 43 (0,0,2) 0.801 59.

23 (2,1,1) 0.620 40.38 20 (1,5,1) 0.636 59.

24 (2,2,1) 0.586 40.97 22 (1,5,2) 0.620 60.

25 (2,3,1) 0.562 41.53 37 (1,1,3) 0.614 61.

26 (1,6,1) 0.561 42.09 131 (0,0,3) 0.571 61.

27 (0,6,1) 0.554 42.64 31 (1,2,3) 0.536 62.

28 (2,2,2) 0.519 43.16 68 (0,1,5) 0.495 62.

29 (1,6,2) 0.512 43.68 47 (1,1,4) 0.493 63.

30 (2,3,2) 0.511 44.19 41 (0,2,3) 0.489 63.
05631
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C. The energy spectrum

An interesting and illuminating way to discuss the diffe
ence between the two flows is provided by the energy sp
trum. It was proposed in Ref.@4# that the main difference
between the spectra of the two flows should appear in
position of the dissipative scale that separates a spe
power law from exponential decay. The increase of the d
sipative scale was indeed observed in recent DNS of
mogoneous isotropic turbulence in the FENE-P model@17#.
However, the present results indicate that important chan
involve the energy containing scales.

In Fig. 11, the energy is plotted for the two flows as
function ofn. The Newtonian case displays a spectral plate
for the most dominant modes, which crosses over to a po
law for nN>8. In the case of the viscoelastic flow, the pl
teau is dramatically higher,but also the power law change
its slope. It appears that the whole spectral curve is tilted
favor of the energy containing modes and on the expens
the lower energy modes and the dissipative modes.

The difference between the power laws can be m
clearer by comparing with what can be obtained from
Kolmogorov law for highk vectors. For relatively largek, we
can expect the flow to isotropize@19,20#, and Fourier modes

FIG. 10. Energy sumE(n)5( j 51
n E( j ) for the Newtonian~solid

lines! and for the viscoelastic~dashed lines! flow. The sums are
computed in their respective energetic ordering. The Reynolds n
ber is Ret5125.

FIG. 11. Log-log plots of the energy distributionEn vs mode
indexn for the Newtonian case~solid line! and the viscoelastic cas
~dashed line!. The rough K41 prediction~39! is shown by the
dashed-dotted line. The Newtonian and viscoelastic dependen
are shown in their own energetic ordering. The Reynolds numbe
Ret5125.
2-9
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would again become the best. In this asymptotic situat
~neglecting intermittency corrections!, the spectrumE(k) is
expected to beE(k)}k211/3. In an isotropic environment, we
also expect thatn is proportional to the volume of the sphe
of radiusk, i.e., n}k3. Thus, we can expect for large value
of n,

En}n211/9, n large. ~39!

The law proposed in Eq.~39! is displayed as the dashed
dotted line in Fig. 11. We see that it is in rough agreem
with the power-law section of the Newtonian spectrum, bu
is certainly not in agreement with the viscoelastic spectr
which, as mentioned before, is becoming steeper on
whole. This is a clear demonstration of the increase in ene
of the energy containing modes on the expense of the oth
We propose that even the power-law section of the viscoe
tic spectrum will not have a ‘‘universal’’ slope, but rather
slope that depends on the concentration of the polymer
the degree of drag reduction.

What emerges from this study is that the understandin
drag reduction lies in the reordering and energy redistri
tion of the energy containing modes. To examine these p
nomena further, we consider now the energy contents of
viscoelastic modes ordered byn

N
instead of their own order

ing. This plot~see Fig. 12! is a very vivid graphic represen
tation of the data of Table I, stressing very strongly an
concentration of energy in the dominant viscoelastic mod
which are however rearranged in dominance compared to
Newtonian case. Next, we want to reiterate that one sho
focus on the most energetic modes. Noticing from Tabl
that all the dominant modes in both flows are associated w
q̃x50, we consider next these modes as a function ofq̃z for
p51,2. In Fig. 13, we show the energy of these modes.
note that the dramatic redistribution of energy occurs o
for the most energetic modes withp51; The less energetic
modes are not affected much. Already the modes withp
52 are seen in the figure to be affected in a negligible w
In our opinion, this is a clear message that to understand
reduction, we need to understand the rearrangement o
energy containing modes. For our flow configuration,
most relevant are the modes that are space homogeneo
the spanwise direction. It should be stressed, however,
different geometries, and even channel geometry with dif
ent aspect ratios, may bring forth other modes as the m

FIG. 12. Plot of the energy content~in percentage of the tota
energy! for the Newtonian~solid line! and viscoelastic~dashed line!
empirical modes. Both cases are plotted as a function ofn

N
.

05631
n

t
it

e
y

rs.
s-

nd

of
-
e-
e

e
s,
he
ld
I
th

e
y

y.
ag
he
e
s in
at
r-
st

relevant ones. Nevertheless, we expect that drag reduc
would always be associated with a substantial increase in
energy containing modes, whatever these are for a given
configuration.

V. CONCLUSIONS

In this paper, we initiated a systematic study of drag
duction on the basis of DNS of the FENE-P model. We
vestigated simulations of Newtonian and viscoelastic flo
in channel configuration at the same friction Reynolds nu
ber. Our main aim is to understand the mechanism of d
reduction. Since drag reduction involved modifications of t
mean flow and of the large scale gradients in the flow, we
motivated to understand more the energy containing mo
rather than focusing only on phenomena of small scales
this end, we have found first the list of empirical modes th
represent the velocity field in an optimal way in an ener
decreasing order. The first important discovery was that
list contains the very same modes for the Newtonian a
viscoelastic flows. We propose that this finding will offer
huge simplification in any future theory of drag reductio
While we cannot offer a clean explanation of this finding, w
can proceed at this time taking the approximate invarianc
the modes as an empirical fact. What needs to be unders
is just the energy distribution and reordering of the modes
the viscoelastic case.

We should stress that the point of view proposed h
differs in a fundamental way from the approach present
for example, in Refs.@2,4,18#. The thinking there focuses o
the energy cascade in the turbulent flow, and on the mod
cation of the small dissipative scales. Roughly speaking,
maximal gradients of the velocity are estimated from bala
ing the right-hand side of Eq.~4!. Neglecting the statistica
correlation between the conformation tensor and the velo
gradient, one can estimate the maximal velocity gradient
^]u/]r &;1/tp . Thus, the matching of the polymer relax
ation time with an eddy turnover time is used to predic
decrease in the maximal velocity gradient, which is int
preted as drag reduction. We take an exception to this
proach. First, a careful analysis of the space dependenc
the conformation tensor shows that it is highly correlat
with the velocity gradients ~see, for example, Refs

FIG. 13. Energy of the most energetic modes for a givenq̃x

50 as a function ofq̃z . p51 modes are represented by circles a
p52 modes by triangles. They are connected by solid lines
Newtonian modes, and by dashed lines for viscoelastic modes
2-10
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@6,17,21#!. Thus, the estimate taken above is questionabl
best. But, moreover, we have shown that the main chan
between the Newtonian and the viscoelastic modes occu
the energy containing modes. The energy containing mo
are highly anisotropic, they are not Fourier modes, and t
connection to the small scales where the isotropised K
mogorov picture is tenable is very unclear. A theory th
assumes a K41 spectrum down to a modified viscous s
does not appear tenable for the FENE-P flow, as seen in
11. We propose that a theory of drag reduction entails
understanding of the relative energy of the modes that c
acterize the largest scales of the flow.

To understand the relative ordering and the relative
ergy of the most dominant modes, one needs to study
energy intake by these modes from the mean flow@9,10#, the
energy exchange between the modes, and the energy
M

n

n

ett
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change with the viscoelastic subsystem represented by
conformation tensor fieldR(r,t) @17,21#. Such an investiga-
tion calls for measuring additional statistical objects such
third-order correlation functions. The necessary simulatio
are in progress and the results will be published elsewhe
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